Poker is a game of imperfect information (because some cards in play are concealed) thus making it impossible for anyone (including a computer) to deduce the final outcome of the hand. Because of this lack of information, the computer's programmers have to implement systems based on the Bayes theorem, Nash equilibrium, Monte Carlo simulation or neural networks, all of which are imperfect techniques. This is unlike games such as chess where (because no information is concealed) a computer can play with greater accuracy than a human.
Methods are being developed to at least approximate perfect poker strategy from the game theory perspective in the heads-up (two player) game, and increasingly good systems are being created for the multi-player game. Perfect strategy has multiple meanings in this context. From a game-theoretic optimal point of view, a perfect strategy is one that cannot expect to lose to any other player's strategy; however, optimal strategy can vary in the presence of sub-optimal players who have weaknesses that can be exploited. In this case, a perfect strategy would be one that correctly or closely models those weaknesses and takes advantage of them to make a profit, such as those explained above.
Methods are being developed to at least approximate perfect poker strategy from the game theory perspective in the heads-up (two player) game, and increasingly good systems are being created for the multi-player game. Perfect strategy has multiple meanings in this context. From a game-theoretic optimal point of view, a perfect strategy is one that cannot expect to lose to any other player's strategy; however, optimal strategy can vary in the presence of sub-optimal players who have weaknesses that can be exploited. In this case, a perfect strategy would be one that correctly or closely models those weaknesses and takes advantage of them to make a profit, such as those explained above.
No comments:
Post a Comment